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Summary

Algebraic expressions in terms of elementary mathematical

functions are derived for power absorption and dissipation by

eddy currents and magnetic hysteresis in ferrite spheres. Skin

depth is determined by using a variable inner radius in

descriptive integral equations.

Numerical results are presented for sphere diameters less

than one wavelength. A generalized power absorption param-

eter for both eddy currents and hysteresis is expressed in terms

of the independent parameters involving wave frequency,

sphere radius, resistivity, and complex permeability.

In general, the hysteresis phenomenon has a greater sensi-

tivity to these independent parameters than do eddy currents

over the ranges of independent parameters studied herein.

Introduction

Damping of electromagnetic waves by iron oxides differs

distinctly from that by iron (refs. 1 and 2). At low wave

frequencies large persistent eddy currents can be induced in

iron because of its high electrical conductivity, a process that
converts field energy into heat as ohmic losses. At high wave

frequencies, however, the oscillating currents cannot

effectively penetrate the surface of iron.

Ferromagnetic and ferrimagnetic oxides (ref. 3, pp. 24
and 25), on the other hand, with their low conductivity and

large skin depth (ref. 4) can be effective in absorbing field

energy by eddy currents even at high wave frequencies. Their

low weight densities, approximately 60 percent that of iron

(ref. 2), make them attractive for flight applications.

Associated with a harmonic wave motion is a relatively large

hysteresis effect due to frictional resistance in the crystalline

structure (Weiss domains) and to radiation from electron spin

reorientation (ref. 5, p. 16), again resulting in dissipation of

the applied field energy. These damping mechanisms cause

a phase shift between the applied magnetic field BA and the

resulting magnetization M, which enters the analysis by use
of a complex susceptibility, X = X' -jx" (ref. 5, p. 100).

Dissipation of field energy in the study reported herein

was treated with a complex isotropic permeability

# = tz' -j#" = 1 + X' -jx" in the ferrite spheres.

Large ratios of waveIength h to sphere radius a are of main

interest. Scattering is then of the Rayleigh type, which is

proportional to sphere diameter divided by wavelength to the

fourth power (ref. 6, p. 457). Therefore diffraction can be

neglected.

Analysis

Power absorbed per sphere due to internal eddy currents

Pec plus that due to hysteresis Pny is

1 I rioidV+l t_ HoOBdv
(1)

The linear nature of Maxwell's equations permits Pec and Play
to be treated as separate individual events. Symbols are defined

in appendix D.

The objective now is to evaluate these two integrals in terms

of elementary algebraic functions and the basic parameters of

the applied wave along with the material properties of the
ferrites.

Wave-Particle Interaction

Consider an applied transverse electromagnetic wave with

a propagation vector K and mutually orthogonal electric and

magnetic field vectors EA and Ba (fig. 1) having a harmonic

time dependence d 'a. The magnetic vector potential relation

V × A = B used with the applied wave motion of figure 1

gives

A A = so Bar sin 0 (2)

The large X/a values of interest herein permit neglect of

Maxwell's displacement current inside the spheres (ref. 7,

p. 368). Then with use of an internal magnetic potential A i

and the laws of Faraday, Ohm, and Ampere,

V 2Ai = jwlzT" -1Ai

With the assumption that A i is independent of azimuthal angle

(as on p. 374 of ref. 7), this equation reduces to

1 0 (r2 0Aj x) + (1-cos20) '6 c92[(l-cos20)!_Ai]
r 2 Or _r/ r2 0 cos20

= fio#r IA i (3)
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Here conductivity is assumed to be negligible, and permeability
outside the sphere/_o is considered to be real.

The constants C and D of equations (4) and (7) are next to
be determined. Solutions must be matched at the surface r = a

so that (ref. 7, p. 376).

Ao(a) = Ai(a) (8)

To satisfy conservation of magnetic flux across this boundary.
B • n must equal zero and thus by StOkes' theorem

INDUCED FIELD

IN SPHERE

Figure 1,--Transversewave interacting with a sphere. Wavelength X much

greater than sphere radius a.

Solving equation (3) by separation of variables gives

1 BACr_II213j2(r_ ) sin 0
A,=_]

where

(4)

p - (5)
7"

and

(6)

By convention, a negative sign is used beforej in the definition

of complex permeability _. The imaginary part/_" must then

be a positive number for a loss of wave energy.

The contribution of the applied wave plus the vanishing
influence of the sphere on the external vector potential with
radial distance is

O(rAo) O(rKi)
--/_o -- at r -- a (9)

Or Or

This equation implies that there is no surface current and that

the current enters the sphere as a continuous distribution, which

is the true case for microscopic detail.

Substituting equations (4) and (7) into both equations (8)

and (9) gives, in terms of Bessel functions,

a 3 + D = a3/2C [I_1/2 (axiS)

1

- -- II/2 (ax/_)]
(10)

and

(2a 3 - D) /z = - #oa3/2C II_l/2(a@-p)

-(ax/jp + a_jp )11/2 (ax/_,]

(11)

Equations (10) and (I 1) can be combined to solve for C and
D as

and

C

0=0 3

3#aS/2x/_

(lz--#o)a',/JP l-i/2(ax/-_) +[Ixo(l +jpa2)--t_] 'l/_. (a'_)

ax/_ (2#+/Zo)l_,,2(a,./_)--[l_o(l+jpa2)+2#] I,,2(ax/_)

axljp (#--#o)l-,/2(ax/jP)+[#o(l+jpa2)--#] 11/2(a_)

(12)

(13)



ThustheequationstodeterminethepotentialsA i and Ao keep

the same form as in reference 7, to which they reduce as g"

goes to zero.

Eddy Currents

By using Ohm's law in Faraday's equation

OB
_7 ×E=rV ×i ..... jwV xA i

Ot

a solution of which, for current i inside a sphere, is

i=i_- -jwAi (14)
T

The power absorbed per unit volume of the sphere by eddy
currents is

dPec i
- ri.i (15)

dV 2

and

Cr = cos(2r 5,,,47p) (22)

in the upper and lower limits of integration, respectively, and

CC=97r Ix2] _ 3/2a6/(U2_ola2(Ca+ca)

+ +a2.2 (a2 o[2- Z (Co-%) - Za

where

dV = r2 sin 0 dO dr d_ (16)

Substituting equations (4) and (14) into equation (15) and

integrating the result over 0 from 0 to 7r gives the power

absorbed per sphere as

a

Pec - 7rc°2B]CC /3/2(r_) /3/z(r,fZjfi-jfi) r dr (17)

3r d

if the radial distance to the lower limit of integration d is set

equal to zero. Varying d allows the amount of power

absorption versus wave penetration distance into the sphere

to be determined for a study of "skin depth."

The integration is performed in appendix A and the constant
CC is determined in appendix B. This results in

eec _°28_cC I (so - s.) a,._jp + (s,, - s.) (R../fp
37_p[ (Re p [

a _ -_ (18)

where r equals a and d in

S_ = sinh (2r _R_x/jp)

s_ = sin (2r 5,,¢,/jp)

(19)

(20)

Cr = cosh (2r (Rex@) (21)

where U=/_ - go and Ug2 = gff - 2go (Re g + go2. These
equations reduce to those of reference 7 as distance d and

permeability U" go to zero.

Hysteresis Loss

Energy of the applied electromagnetic wave is also dissipated

in the continual attempt of the applied oscillating wave motion

to alter the Weiss crystalline structure and the electron spin

orientations inside the ferrite spheres. This is illustrated by

the lag in B to the changes of H in a hysteresis loop.

The energy change per unit time Phy per unit volume in a
hysteresis loop is

H,0__B 1
Ot _ jwn.

for a harmonic time dependence. For an isotropic permeability
= _H = (#" + jlz') R Thus the wave power loss per unit

volume due to hysteresis is

dPhy_ 1 w# " (H • ft)
dV 2

1
=_ co#" H 2

2

t/,°_

= 21.1--z(IB I + i80l (24)

which is consistent with that on page 100 of reference 5. By

using equation (4)



CBa

B = V X A i = r3/2

I1 cos 0 6/2(r_)
-- sin 0 [ls/2(r_jp) - r-,_] I,/z(r_)

0

(25)

Substituting equations (16) and (25) into equation (24) and

integrating over d¢ gives

7rw#" B2CC I i a l _ c°s20+ _A sinZO i3/2(r_)Plly-1#12 d o r

X h/2(r',/_) sin 0 dO dr

+ - _01 rlt/2(r_) ll/2(r',[--jfi) sin30 dO dr
4 _,t 0

'I°j+ +.
4 d 0

X ll/2(r_--jfi) I3/2(r_)] sin30 dr I (26)

Using

and

5((cos20 + tA sin20) sin 0 dO = 1

,S+ 1- sin30 dO = -
4 o 3

in equation (26) gives

X I1/2(r's/--jfi)]3/2(/@)] dr 1
(27)

The integrations over r are shown in appendix C. The resulting

expression (C18) can be written as

Phy- tlz[2 BjC(" 16 "_[r

1 [aS_+fls_ G-c, S_ _1
AI- --

3 [olr 2 (N/-_r) 3 + --_ --

+ + a Shi(2r fit,@)
6

i
r=d

(28)

where use was made of definitions (19) to (22) and

2 fit+@
c_ - (29)

IpT

2 9,.x/_
3 - -- (30)

_,_

The hyperbolic sine and sine integrals can be expressed as

X 3 X 5 X 7
ShiCX') = X + -- + -- + -- (31)

3x3! 5x5! 7x7!

and

X 3 X 5 X 7
Si(X) = X + (32)

3x3! 5x5! 7x7.t

(ref. 8, eqs. 672.11 and 431.11).

Generalized Parameters

The dimensionless power parameter rP/(w2aSB_) for both
,/

eddy currents and hysteresis can be written in terms of two



independentdimensionlessparameters:a normalized
permeability

# ' _j# ,,
kin =

/%

and a combination of the remaining physical variables

(_o = a2po, where Po = °_#o/r.

For eddy currents with the lower limit of integration d of

equation (AI0) set equal to zero

rPec 37r[_12_ [_o_o,B] = _ _, a So_..,_ + s° _,_

(33)

where (2 = 12o#". The arguments of the functions S,, So, Ca,

and c,, defined in equations (19) to (22) can be expressed in

terms of the real and imaginary parts of 2j'_. The constant
33 is defined as

33= u]. tel (c,, + co)

+[G +2 + 2-2
x (Ca - ca) - -,/2

- (So-s°) _e(U. (_Je)

- (So + So) _.,(u. ff,/e)]
)

(34)

where U. = #,,-1 and U_. = 1#,,12+ (1-2 (Re /z,,). The

corresponding hysteresis equation is

T---_--- -- 97r/'*" I/_" ]x/_ I( _2 + _2w2a5B] 33 6

9]+-
3[ ]_--_ I6_]3/2 cz

+ + 6 _ Shi(2 6_exf_)

(35)

Results and Discussion

For physical clarity it is advantageous to first relate results

directly to the basic independent variables r, w, #, and r as

well as to a in figures 2 to 4. The ranges of generalized

parameters _2o and a/X are indicated in the legends of these

figures. The plotting variables in figures 5 and 6 are

dimensionless power absorption parameters that are functions
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(a) Power absorbed by eddy currents.

(b) Power absorbed by hysteresis. Curves are shown at increments of powers

of the square root of 10.

Figure 2.--Effect of varying resistivity r with wave frequencyf = 107 Hz;
- -4

radius of sphere a = 10 m, and normalized permeability #/#o

= lO0-jlO. Parameters a/X = 3.3 × 10 -6 and O_o = a_w_,,/r

= 87r _ × 10-8/r.
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Figure 3.--Effect of varying wave frequency f with radius of sphere
a = 10 -4 m; resistivity 7 = 10 [2-m; and normalized permeability

p//&, = lO0-jl0. The curves reach asymptotes atf < 10 9 for hysteresis
and f< 3x 1012 for eddy currents. Parameters a/X = 3.3 x lO-13fand

(_o -- a2¢°Izo/r = 8r2 x 10-16f.

iiJ
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• ] - DEPTHRATIO, r/a

Figure 4.-- Effect of varying radius of sphere a from 2x10 -4 to

256× 10 -4 m with normalizing radius ao = 10 -4 m; wave frequency
9 ......

f = 10 Hz; reststw_ty -r = 10 t2-m; and normahzed permeabthty _/g,,
= lO0-jlO. Parameter a/h ranges from 6.7x10 -4 to 8.6×10-'and

parameter (_,, from 3.2 x 10-_ to 0.5.

==

of real and imaginary parts of permeability for fixed values

of (_o.

Skin Depth

For good absorption of wave energy the electromagnetic

waves must penetrate the spheres to a sizable depth. The

fraction of total power absorbed by a sphere as a function of

the lower radial integration limit r = d in equations (18) and

(28) is used as an indication of skin depth in figures 2 to 4.

Figure 2 shows the effects of resistivity z ranging from a

typical value for iron of 10-70-m to values that lie on the

asymptotic curve. This curve was reached as "r increased

beyond 10 -4 _-m for eddy currents and beyond 1 for

hysteresis. Held constant were frequency at 107 Hz,

permeability ratio at 100-jl0, and radius at 10 -4 m. In

general the wave penetration depth was considerably greater

for hysteresis than for eddy currents.

Decreasing frequency f = w/2rr gave the same trends in

figure 3 as increasing r, as expected from the basic parameter

a2_ixo/r. Here _ held constant at 10 _2-m. The ratio a/X

varied from approximately 1 to less than 10-3 in the curves

shown for hysteresis. For eddy currents, however, a/X< 1

yielded curves that lie on their asymptote. Curves for a > X

looked reasonable but violated the neglect-of-displacement-

current assumption and therefore are not shown.

The curves of various size spheres in figure 4 are for radii

less than 0.1 wavelength and therefore are well within the

validity of the neglect-of-displacement-current assumption.

Radius was varied by multiples of 2 from 10 -4 to

256x 10 -4 m. Again r and ¢o were held constant at 10 and

27r× 109, respectively. The eddy current curves, shown

dashed, are asymptotic at a<3.2x10-3; the hysteresis

curves are asymptotic at a <2 × I0-4.

Power Absorptions P_ and Phy

The same parameter, r/aSeo2B 2, factors out of both the

hysteresis equation (28) and the eddy current equation (18).

Typical results, shown in figures 5 and 6 for these cases, are,

however, quite different.

The eddy current power parameter was insensitive to (20

over the wide range of 10-7< (20 < 10-2 as shown in

figures 5(a) and (b), but gradually decreased with increasing

(2o beyond 10 -2, as shown in figures 5(c) and (d). These

three-dimensional plots are symmetric about a diagonalcurve

(shown dashed) where/x' = #". This curve also represents

a local minimum of the eddy current power parameter at low

_' and #".

The eddy current power parameter varied over less than 3

decades, but the hysteresis power parameter varied from 12

to 7 decades, depending on _o; as/_' and _" were varied

over 3 decades in figures 5 and 6.
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Figure 5.--Power absorption by eddy currents for various values of

(i o = a2o;#oh ". Dashed line denotes a diagonal and local minimum.
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Real and imaginary permeability played similar roles in the

eddy current formulation, since they entered P_c only through

_. Starting from the dashed diagonal line of figure 5 the

parameter rPeJaSw2B ] increased to the same peak values

with increasing/_' or/_".

Power absorption by hysteresis, however, was directly

proportional to a multiplier #" in addition to its dependence

on _c This offset the symmetry of dependence on #" and/z"

present through the parameter p in equations (18) and (28)

and made absorption much more sensitive to hysteresis than

to eddy currents. As a result an upper elevation (shown dashed)

of the three-dimensional plots of rPhy/aS_o2B] formed
close to the diagonal /z"/t_o = #'f/Zo in the range

10-7_12o < 10 -1. =

As a practical example consider a resistance r of

10 4 fl-m, a B n of 1 gauss (10 -4 tesia), and a frequency _0Of

2r × 10 J0 rad/sec. Then the peak power per sphere absorbed

by hysteresis Varies from about 0.2 to 14 W as the sphere

radius a varies from 0.1 mm to 1 cm in figures 6(a) to (e).

On the other hand the maximum power per sphere absorbed
by eddy currents varies from about t .4 x 10-1° to 1.4 W for

the same r, BA, and range of a in figures 5(a) and (b).

For this same example let/_" approach zero in figure 5 while

holding #' equal to u o. The power per unit volume by eddy

currents then reduces to 0.2 W/cm 3 for the same r, BA, and

_0 values. This power absorption is in close agreement with

results obtained from the sphere equation on page 135 of
reference 5.

Concluding Remarks

Expressions were obtained, in terms of simple algebraic

functions, for power absorption of electromagnetic waves in

ferrite spheres by eddy currents and hysteresis. Skin depth was

especially large for hysteresis and was significant for eddy

currents, indicating good absorption for the small spheres of
special interest herein.

Generalized parameters were found that reduced the five

independent variables wave frequency w127r, sphere radius a,

resistivity r, and real t_' and imaginary #" permeability

divided by free-space permeability #o to three independent

generalized parameters 12o = a2w#o/r, #'lifo, and # "/_o
5 "_ ?

and two power loss parameters rPoJaSweB2 A and rPhy/a W'BA
for small spheres. Working curves were presented for

obtaining power losses from input to the independent

parameters.

The eddy current power parameter was insensitive to 12o
over wide ranges, 10-7<12o<10 -2 , and gradually

decreased with increasing 12o beyond 10 -2 . Real and

imaginary permeability played similar roles in eddy current
formulation, since they entered Pec only through complex

# = #' -j# ". Power absorption by hysteresis, however, was

directly proportional to #" in addition to its dependence on
complex #. This offset the symmetry of dependence on/z'

and #" and made absorption much more sensitive to hysteresis

than to eddy currents.

From results obtained by using the equations derived, it

appears that ferrite spheres provide a good means of damping
extraneous electromagnetic waves and isolating electronic

circuitry, especially in flight applications where weight is a
consideration.

The components of the induced magnetic field, Br and Bo,
diminished rapidly with radial distance as r -3 and r -2,

respectively. Except for closely packed spheres, there should

then be little interaction between small spheres suspended in

an insulator. The intentional degradation of an electromagnetic

wave by its penetration into such a medium should then be
closely proportional to the distance of wave travel and the

number density of spheres.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, June 13, 1989
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Appendix A

Evaluation of Integral in Equation (17) for

Power Loss by Eddy Currents

The equation of the modified Bessel function Im(kr) can be
written as

L J k2+7 Im( r) (A1)

Multiplying equation (A1) by Im(kr) and equation (A2) by

lm(kr ) and forming the integral of the second of these

equations subtracted from the first gives

and its conjugate as

where

1 d [rd[m(kr)] = (_2 m_lr drr L _J + lm(kr)
(A2)

(A3)

d,f m(_r) d-r r--a,.,(kr)] d[dr ] - Im ( kr ) _r r ----ff_r J .) dr

S=j (p + fi) Im(kr) Im(kr)r dr

d

Using integration by parts on the left side yields

] l'_(_r)rdlm(kr) lrn(kr)rdl'_(t:r)I,idr d----_ -J(P + fi) I I,.( (_kr)l,,, r)r dr

dd

a dr dr dr -dr J

Finally

j (p + _) .(kr)Im(kr)r dr
Od

[ r[I"z(-_r)klm(kr) Im(kr)klm-' ] I_= -- (kr) (A4)

where the prime marks denote differentiation with respect to

the arguments of the Bessel functions.

Substituting equation (A4) into equation (17) with m = 3/2

gives

eec --

_r,_B_CC7

3jr(p + p ) r [kI3/2(_:r)l_/2(kr )

-- _;I3/z(kr)13/z(l(r)] I"
r=d

(A5)

Using m = 3/2 in

l/,,(z) = l,._l(z) - -mIra(Z)
Z

(A6)

of reference 9 (p. 79, eq. (3)) to eliminate the derivatives in

equation (A5) yields

PCC m

7rw2B_CC

3jr (p +_) r [kI3/2 (kr)Ii/2 (kr)

- _'13/2(kr)ll/z(_:r)] 1£

Then using m = I/2 in equation (A6) and reference 9 (p. 79,
eq. (1)) gives

11



eec w

X Ir [kl_l/2(kr)Iln(kr ) -

J(P+P) [_- P I 11/2(kr)ll/2(kr) d

which can be written as

_'I_ 1/2(kr)ll/2 (kr)]

2r_o2B2C(_
Pec-

3r(p+fi)

Utilizing the relations

/-I/2(Z') ll/2(Z) =

]_hn [rkl-l/2(kr)ll/2(kr) J

61. p ! aP l ll/2(kr)ll/2(kr) d
(A7)

2 cosh _ sinh z

Izr

e2_t,z _ e -2ot_z e2JS_e-2Jfl,,,z
-- _[

2rrlz ] 2_r[z I

= _ [sinh(2 6/, z) + j sin(2 5. z)]J_-Izl

(A8)

and

I1/2 (Z) I1/2 (-_) --
2 sinh z sinh _-

e 2ja,<+ e - 2j_,,,z

27rlz [ 27rlz t

1
[cosh(2 (R, z) - cos(2 fl,,_ z)]

'_lzl I. .I

(A9)

in equation (A7) with z --- kr = xf-fp r and E = kr gives

Pec Isi  2r
+j sin(2r fl._x/_) r lp] 3n

x[cosh(2r61ex/_)-cos(2rS,.x/fp)] 1]

x (Sinh(2r (R. j-_p) + j sin(2r 5,,c,ffp))]

 e Ic°sh 2r e  c°s 2r   'Jr ,'t2[i
Finally

_2B_CC
p_ -

3r_p[ (Re p ] (5,- J'_p) sinh(2r (Rex/_)

+ (61ex/jp) sin(2r 5_V_jp) 61ep
r IpI

x [cosh(2r (Rex/_)- cos(2r fl,nw/_)] [_
d

(Aio)

For d = 0 and _" = 0 (therefore p = file p), equation (A 1O)
reduces to that of reference 7 (p. 378):

Pe¢

_B_CC
3rp3/2a

where u = ax/_p, S = sinh #, s = sin it, C = cosh it,

c = cos #, and, by using equation (A3), 5,,,v_ = fft_x/jpjp
= p-,/p-,/_.

12



Appendix B

Determination of Constant CC Used in Equations (18) and (28)

The scalar product of constant C in equation (12) times its

complex conjugate can be expressed as

CC 9#/2 V_fi a 5= 031)
AA + BB + AB + hB

where the constants in the denominator are defined by

M

× LolaZl_l/2(@p a)l__/2( -,,US_ a) 032)

n9 = [_ - _,o (1 + jpa2)] [/2- _,o(1-j_a2)]

× 11/2 (@p a)ll/2 (r_ a) 033)

A/_ ,& F q

= (# - #o)a [_o( 1 -jfia 2) -/2]

x I_l/2(w_p a) lj/2(',/_p a)

and

= (12- #o )a _ [/z,,(l+jpa 2) -#]

X l_l/2(x/-jfia) 11/2(_ a) (B5)

The product of Bessel functions in equation 032) can be written

by using reference 9 as

I_l/2(x/jpa) l_l/2(x/_jfia)-
2

cosh(x/jp a)
r x/_J a

X cosh(_-j/7 a)

1 (e,_a+e_,_a)
2 7r_p [a

x (e _-j_ _ + e -'_-_ a)

l_j/2CV'fp a) I_l/z(_/-jfi a)

1

=7--_a

X [cosh(2 ff_ex/jp a)+ cos(2 5,,,V_p a)]

036)

Since

1-1/2(_ a) 11/2( _ a)

= I_1/2( --x/_jfi a) /i/2(V_a)

it follows from equation (A8) that

/_l/2(x_jp a) I1/2( --x/_ a)

1

X [sinh(2a (Re @)-j sin(2a 5m ",fjp)]

(B7)

Using equations (A9) and 037) in equations 033) and 034),

respectively, along with equations (B6) and (A8) in equations
032) and 035) reduces the Bessel function expressions in

equations 032) to 035) to simple hyperbolic and trigonometric

functions defined in equations (19) to (23). This results in the

expressions

AA = a'_] Ug C,,-c. 038)

_ ] C.- c.BB= U_+tz, 2 (a 4[p]2-2a 2 9,,,p) 7ra'_
039)

and therefore and

13



Substituting equations (B8) to (B10) into equation 031) gives

equation (23).

!1-

N
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Appendix C

Evaluation of Integrals in Equation (27)

for Power Loss by Hysteresis

Equation (27) can be written as

I_12e.y _ l
7[._]2,,BAC_ = 51 + 3 (52 - 53 - 54)

(C1)

if[ 1 ]5z =-_r eZ + e-Z --- (e z _ e-z)Z

×? +e-'-l ,e'-e-',]*
z zlzl

Here

51 : S_ 1312(z) 1312(z) dz

and by using reference 10 (p. 443)

51 = 2 cosh z-- sinh cosh Z-- sinh _ dz
7r Z Z

In like manner

2S 21_92 = - _.lj/2(Z)Ii/2(Z) dz =- --_ sinh z sinh _ dz
7r 71"

53 = I_/2(Z) I3/2(_) dz

2 i (cosh _ g= _ sinh Z - -- sinh

and

l ( ' )54=53 =2 lsinhg coshz--sinhz d
_r Izl z

where

z = r x/_ and f = r_/-jfi (C2)

Next, replace the hyperbolic functions by their exponential

forms, rearrange, and reduce as in the following example for
ill.

S[( 1, _)1 1 + e 2_
2_- z_ z

( ' ,__)+ 1 + -- + - + e -2_*z
ZZ Z

( ' ,+)+ 1 + e 2j_"z

zz z

+ 1 ----+ . e -2j_'<
z_ z zlzl

e__] dzzlzt

1 I[ z2+l27r zz

+--

-3V --

2_l,z + e-2fft< /

-- e 2j5"< + e-2ja,,< -- _ e 2m_z e

zz z2

_-_(e_-_-_)]__ _,z,
_/t .... z2-1

r Z2

2 61ez
-_ sinh(2 6t, z)

z_

[2_-z_in_2__,]_z-ii-3

cos(2 5,, z)

(C3)
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In like manner

lS[ ]-52 = - cosh(2 (Re z) - cos(2 fJ,, z) z dz
7r Z

and

(C4)

= _1 f sinh(2 (Re z) -j sin(2 5,. z)
53

_" J lzl

cosh(2 (Re z) -cos(2 5,. z)

_Izl
dz (C5)

Since 5 4 is the complex conjugate of 53 , it follows that

53 + 54 = 2 (Re 53 (C6)

Using equations (C2) and (C5) in equation (C6) gives

2

53 + 54- r "_'v_p l d _l_6te_lJPsinh(2 (Re z)

- 5_x/_ sin(2 5_ z)
Re zx/fp

[z[ 2

× [cosh(2 61e z)- cos(2 5,. z)]l _dr
r

(C7)

Substituting equations (C3) to (C7) into equation (C1) and

collecting terms of like integrals gives

_"_ c_- =(_ _3+6 /326"---_a)

Sx --_dr+ ---+--6

f c°sy ot3 I c°shxx _,2 dy+ --x-_--dr

c°sy 1 I coshxdr 'dy + 3--a - 3"_

X fcosydy-o_3 I sinhX_dx+_3

f sin y c_ I sinh x dx× --_- dy +-_ x

fl f sin v
- - _" dy (C8)

3 3 y

where

x=2 (Rez

y=2 5"z

2 6l ex/_

o_-

(C9)

The following expressions enable the integration of equation

(C8). They were obtained by integrating by parts along with

using expressions from pages 89, 96, 148, and 149 of
reference 8.

f cosh x cosh x
-7 -dr- x

+ Shi x (C10)

f coshx coshx sinhx coshx
x4 dr = 3x3 6X 2 6x

1
I-- Shi x (Cll)

6

I cosh y cos y I sin y
_,2dY= dyY ,J Y

(C 12)

I cos y y y yCOS sin COS 1
=-_+ --+-Siy (C13)

j--_dy 3Y3 --_-Y_+ 63' 6

sinhx sinhx coshx 1 Shix (C14)
x--3-dr=- 2x2 2x-+2

I siny siny cosy 1

y3 dy= 2y 2 2y I-2-Siy (C15)

where

I _h x 3 x 5 x 7

Shix= si x dr=x+--+--+--+... (C16)
3×3! 5×5! 7×7!

and

I 7,3 y5 y7Siy= sinYdy
.) y =Y--3--_. +5x5! 7x7!

F... (C17)

=

g
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Theseexpressionsthenenabletheintegrationofequation(C8)
tothefollowingform:

Ik_2]Phi,,2 - ]/_ + O_/_2-- o_) cosh xw# BA Ci_ 6 x
(_ _o__)cosy--+ + 6 y

c_3 sinhx /33 siny o_3 coshx /33 cosy

3 x 2 + 3 3,2 3 x 3 + 3 y3

/32°t6 _) Shix-(_/3+ Iii i (C18)

where x2 and Y2 are the real and imaginary parts of z (see eq.

(C9)) at the outer radius a and xl and Yl are at an arbitrary
inner radius of interest.
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Appendix D

Symbols*

i

J
k

M

P

P

Po

r

Sr

Sr

t

U

U,,

(_o a2po

A magnetic vector potential

a radius of sphere

B magnetic flux density

B magnetic field vector

C constant defined by eq. (12)

Cr constant defined by eq. (21)

cr constant defined by eq. (22)

D constant defined by eq. (13)

fi3 constant defined by eq, (34)

d radial distance to lower limit of intergation inside

sphere

E electric field vector

f wave frequency, to/27r

H magnetic inductance

5 integral in appendix C

5.t imaginary part of a complex quantity

Im modified spherical Bessel function where m is an

odd integer plus 1/2

current

magnetization

normal to boundary

power

parameter o_#/ r

parameter c0_oJr

real part of a complex quantity

radial distance from Center of sphere

defined by eq. (19)

defined by eq. (20)

time

/z - #o

#.- 1

*All terms are in international units unless stated otherwise.

U_ I_[z - 2/zo 6_ t_ + _o2

U]n I/-tn[2 + (1-2 (Re #.)

V volume

X dummy variable in eqs. (31) and (32)

x 2 (Rez

y 2 5,nz

z
a defined by eq. (29)

/3 defined by eq. (30)

0 polar angle

Wave propagation vector

k wavelength

tz permeability inside sphere, #' -j#"

/_, normalized permeability, #/#o

#o permeability outside sphere (vacuum), 4a-× 10-7

henry/meter

r resistivity

so azimuthal angle

× susceptibility

c0 angular velocity

Subscripts:

A applied wave

a at a radius equal to a

d at a radius equal to d

ec eddy current

hy hysteresis

i inside sphere; internal

o outside sphere

r radial direction

0 direction of polar angle

Superscripts:

' real part of complex quantity

" imaginary part of complex quantity

-- complex conjugate

unit vector

a

_1_

r

y_

.,v--
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